联系人姓名:
联系人电话:
手机号:
邮箱:
QQ:
工作单位:
地址:
意向说明:
免费查询
一种基于深度强化学习的无参考图像质量客观评价方法
成果名称: | 一种基于深度强化学习的无参考图像质量客观评价方法 | 关键字: | 失真 , 图像 , 决策选择 , 质量 , 评价 , 图像质量 , mssim , 主观 , 决策 , 高质量 | 应用行业: | 计算机、通信和其他电子设备制造业 |
高新技术领域: | 电子信息技术 | 所在地: | 北京市 | 知识产权类型: | 发明专利 |
知识产权编号: | CN201811641631.6 | 成果体现形式: | 成果属性: | ||
成果所处阶段: | 授权 | 成果水平: | 国内领先 | 研究形式: | |
学科分类: | 战略新兴产业: | 新一代信息技术 | 课题来源: | ||
第一完成单位名称: | 中国传媒大学 | 第一完成单位属性: | 技术成熟度: | ||
合作方式: | 专利许可 | 交易价格(万): | 5.00 | 所属十强产业: |
本发明公开了一种基于深度强化学习的无参考图像质量客观评价方法,该方法利用全参考方法对添加失真后的图像质量进行评估并反馈给决策模型,该决策模型的目标是为当前图像选出能造成质量下降最小的失真操作。由于图像质量所能下降的幅度与图像本身的质量密切相关,为了更好地进行决策选择,模型中存在的状态值会学习到有关图像质量的特征,因此将状态值作为图像质量的映射。在训练过程中只需要高质量图像作为输入,而不需要失真图像以及主观分数,在测试过程中将状态值直接作为质量分数输出。实验结果表明,与其他不使用主观分数的无参考图像质量评价方法相比,本方法性能更加优异。
联系方式
苏博晖
15614431192
请填写以下信息
联系人姓名:
联系人电话:
手机号:
邮箱:
QQ:
工作单位:
地址:
意向说明:
专注专业
资深行业经验,专业技术运作团队
信息保密
专利或技术全方位严格保密,保证用户权益
快速转让
依托大数据,精准对接需求企业,节约成本
一站式服务
技术转让一站式服务,省心更放心